Unit 6: Quantitative Techniques for Economies: 3×1:+3=8 War

6.1 Basic Statistics

- 6.1.1 Review of Basic Statistics: Definition, Scope, Importance and Limitation of Statistics
- 6.1.2 Collection of Data: Method of Collecting Primary Data and Sources of Secondary Data
- 6.1.3 Standard Deviation, Coefficient of Variation (CV) and Characteristics of Variance
- 6.1.4 Index Number: Price Index Number Laspeyre's and Paasche's Price Index Number

MEASURES OF DISPERSION:

6.3 Deviations, coefficient of variation and characteristics of variance

Course contents: range, mean deviation, quartile deviation, standard deviation and variance

Some Useful Formula

1. Range (Note: Avoid frequency in case of discrete and continuous serious)

Range = L - S

Coefficient of Range = $\frac{L-S}{L+S}$

Where, L = largest value of series, S = Smallest value of series

2. Quartile Deviation

Quartile Deviation (QD) = $\frac{Q3-Q1}{2}$

. Coefficient of QD = $\frac{Q3-Q1}{O3+O1}$

3. Mean Deviation (MD) from mean, median and mode

J. MICAN DEVIAUON	TVLD J II OIII III OIII	n, meuman and moi		
Series	Individual	Discrete	Continuous	Coefficient of MD
MD				
MD from mean	$\sum X - \overline{X} $	$\sum f X - \overline{X} $	$\sum f m - \overline{X} $	MD from mean
	n	N	N	X
MD from	$\sum X - Md $	$\sum f X - Md $	$\sum f m - Md $	MD from Median
Median	n	N	N	Median
MD from Mode	$\sum X - Mo $	$\sum f X - Mo $	$\sum f m - Mo $	MD from mode
	n	N	N	Mode
•				

Where mean, median, mode and lower/upper quartile can be calculated by using following formulae:

Series	Individual	Discrete	Continuous
Measures			
Arithmetic	$=\frac{\sum X}{N}$	$=\frac{\sum fX}{N}$	$=\frac{\sum fm}{N}$
Mean (AM) or (\overline{X})	_ N	N	N
Median (M₀)	$= \frac{n+1}{2}$ th item	= $\frac{n+1}{2}$ th item lies on corresponding value of equal or just greater than item in c.f.	$= L + \frac{\frac{N}{2} - cf}{f} \times h$ n/2 th item lies on corresponding class of Equal or just greater than item in cf
Lower Quartile Q1	$=\frac{n+1}{4}$ th item	$= \frac{n+1}{4}$ th item lies on corresponding value either equal or greater than the item in c.f.	= $L + \frac{\frac{N}{4} - cf}{f} \times h$ $\frac{n}{4}$ th item = either equal or greater than item lies on class for Q_I ,
Upper Quartile (Q3)	$=\frac{3(n+1)}{4} \text{ th item}$	$\frac{3(n+1)}{4}$ th item lies on corresponding value either equal or greater than the item in CF	$= L + \frac{\frac{3N}{4} - cf}{f} \times h$

			$\frac{3n}{4}$ th item = either equal or
			greater than item lies on class for Q_3 ,
1	Mode (M _o)	= Repeated value	$= L + \frac{\Delta 1}{\Delta 1 + \Delta 2} \times h$
		Or, $3M_d - 2\overline{X}$ (from median and mean)	$(\Delta_1 = f_1 - f_0, \Delta_2 = f_1 - f_2)$
		= Value of maximum frequency	

4. Standard Deviation	(SD), Variance and Coefficient	_
Series/ Class	SD from Actual Mean-	SD from direct method
Individual.Series	$\sigma = \sqrt{\frac{\sum (X - \overline{X})^2}{n}} = \sqrt{\frac{\sum X^2}{n}}$	$=\sqrt{\frac{\sum X^2}{N}-\left(\frac{\sum X}{N}\right)^2}$
Discrete Series	$\sigma = \sqrt{\frac{\sum f(x - \overline{x})^2}{N}} = \sqrt{\frac{\sum fx^2}{N}}$	$=\sqrt{\frac{\sum fX^2}{N}-\left(\frac{\sum fX}{N}\right)^2}$
Continuous Series	$\sigma = \sqrt{\frac{\sum f(m - \bar{X})^2}{N}} = \sqrt{\frac{\sum f d^2}{N}}$	$= \sqrt{\frac{\sum fm^2}{N} - \left(\frac{\sum fm}{N}\right)^2}$
Coefficient and Coefficient Variation of SD	Coefficient of (SD) = $\frac{\sigma}{\overline{\chi}}$	Coefficient of Variation of SD $CV = \frac{\sigma}{\bar{x}} \times 100\%$

Where, $x = X - \overline{X}$ $N = \sum f$ = number of frequency in series f = frequency of series

 $d = m - \bar{X}$

m = Mid-value of class

 $\bar{X} = \text{mean}$

6.4. Index Number

Course contents: meaning, price index number (simple and weighted), Laspeyres's and Paache's price index numbers

Some U	seful	Formu	lat
--------	-------	-------	-----

Calculation of Index	Formulae	Definition of term used in formula
Number		• 18
Simple aggregative	_	P_0 = price level for base year
method	$P_{01} = \frac{\sum P_1}{\sum P_0} \times 100$	P_1 = price level for current year
	ΣΡΟ	$\sum \mathbf{p_0} =$
,		Sum of price level for base year
	4.	$\sum \mathbf{p_1} =$
	<i>'</i>	sum of price level for current year
Average of price	$P_{01} = \frac{\sum P}{}$	n = number of items
relative method	n	$P = \frac{P_1}{P_0} \times 100$
(When AM and GM	$P_{01}(AM) = \frac{\sum P}{R}$	$\sum P = \text{Sum of current year price}$
used)	1 "	
	P_{01} (GM) = Antilog	
	$\left[\frac{\sum \log P}{N}\right]$	
Weighted average of	$P_{01} = \frac{\sum PW}{\sum W}$	$P = price relative = \frac{P_1}{P_0} \times 100$
price relative method	2	w
(When AM and GM	$P_{01} (AM) = \frac{\sum PW}{\sum W}$	= weight of the commodity on base y
used)	2 **	$\Sigma W =$
	P_{01} (GM) = Antilog $\left[\frac{\sum W \log P}{\sum W}\right]$	Sum of the weight of commodities
		$\sum PW = Sum of the weight \times price$
		relativ
Laspeyre's price index	$P_{01} L = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$	P_0 = price of base year
method	∠ P ₀ q ₀	P_1 = price level for current year
Paasche's price index	$P01(P) = \frac{\sum p_1 q_1}{\sum p_2 q_2} \times 100$	$q_0 = $ quantity of base year
method	∠ P ₀ Q ₁	$q_1 = quantity of current year$

Numerical Questions: (1 mark)

20. Find the value of K if the mean of given data is 9.

Income (in Rs.): 8, 4, 12, K, 10, 13

Solution: Given

$$\sum X = 8 + 4 + 12 + K + 10 + 13 = 47 + K$$

N = 6

Mean $(\overline{X}) = ?$

We have,

$$\overline{X} = \frac{\sum X}{N}$$

Or,
$$9 = \frac{47 + K}{6}$$

$$Or, 47 + K = 54$$

$$K = 54 - 47$$

$$K = 7$$

.. The value of K is 7.

21. Find the median from the following data. Length (in cm): 8, 4, 12, 7, 10, 13, 9, 6

Solution,

Arranging the given data in the ascending order: 4, 6, 7, 8, 9, 10, 12, 13

Here,

N = 7

Median (Md) = ?

We have,

$$M_d = \frac{n+1}{2}$$
 th item = $\frac{7+1}{2}$ = 4
4 th item in data series = 8

$$\therefore M_d = 8$$

22. Find the mode from the following data.

Marks (X): 4, 5, 6, 3, 5, 7, 9, 5,

Sol":

We have,

Mode is the maximum repeated number in series.

:Mode = 5

23. If the difference and sum of first (lower) quartile and third (upper) quartile are 20 and 48 respectively. Find the coefficient of quartile deviation.

Soln: Given

Difference of upper and lower quartile $(Q_3 - Q_1) = 20$

Sum of upper and lower quartile $(Q_3 + Q_1) = 48$

Coefficient of Quartile Deviation (C.QD) =?

We have

$$C.QD = \frac{Q3 - Q1}{Q3 + Q1} = \frac{20}{48} = 0.42$$

:. Coefficient of quartile deviation = 0.42

24. If coefficient of variance (CV) is 0.39 and standard deviation is 7.48, find the mean.

Soln: Given

$$CV = 0.39$$

$$SD(\sigma)=7.48$$

$$\overline{X} = ?$$

We have

$$CV = \frac{\sigma}{\bar{x}}$$

Or,
$$0.39 = \frac{7.40}{9}$$

Or,
$$\overline{X} = \frac{7.48}{0.39} = 19.18$$

:. Mean = 19.18

25. If the mode of asymmetrical distribution is 370 and median is 300. Find the mean.

Soln: Given

Mode(Mo) = 370

Median (Md) = 300

Mean $(\overline{X}) = ?$

In case of asymmetrical distribution of data series, we have

$$M_0 = 3 M_d - 2 \bar{X}$$

Or $370 = 3 \times 300 - 2 \bar{X}$

Or
$$2 \overline{X} = 900 - 370$$

 $\overline{X} = \frac{530}{2} = 265$

26. Find the range and coefficient of range from the following data.

45, 20, 25, 15, 40, 50, 35, 30

Solution,

Data in ascending order: 15, 20, 25, 30, 35, 40, 45, 50

Here,

Largest item (L) = 50

Smallest item (S) = 15

Range = ?

.Coefficient of Range = ?

We have,

Range = L - S = 50-15 = 35

:. Range = 35

Similarly,

Coefficient of Range = $\frac{L-S}{L+S} = \frac{50-1}{50+1} = \frac{35}{65} = 0.54$

: Coefficient of Range = 0.54,

Short answers (Smarks)

27. If the coefficient of variance of factory A and B are 0.78 and 0.96 respectively, then find out:

- a. In which factory is there greater variation in the distribution of wage per -employee?
- b. Which factory shows more consistency?

Solution: a.

 $CV_A = 0.78$

 $CV_B = 0.96$

Coefficient of variance of factory $A = 0.78 \times 100\% = 78\%$

Coefficient of variance of factory $B = 0.96 \times 100\% = 96\%$

Since, coefficient of variation is more of factory B, there is greater variation in the distribution of wage per employee.

Solution b: Since the coefficient of variation of factory A is less than of coefficient of variation of factory B. So, factory A has more consistency than factory B.

28. Find the quartile deviation and coefficient of quartile deviation from the following data series.

Wages (Rs.)	0-10	10-20	20-30	30-40	40-50	50-60	60-70
No. of workers	5	3	7	5	10	3	2

Solution: Calculation of Quartile Deviation (QD) and

Coefficient of Quartile Deviation (CQD)

Wages (X)	No. of frequency (f)	Cumulative frequency (CF)		
0-10	5	5 °		
10-20	3	8		
20-30	7	15		
30-40	5.	20		
40-50	10	30		
50-60	3	33		

Price Index Number

 Find the price index number by using simple aggregative method, taking 2020 as the current year and 2019 as base year and interpret the result.

CHILENI ACMI WIT	u ZUIJ as Das	c Jean and meet		
Commodities:	Tomato	Potato	Wheat	Paddy
Price in 2019 (Rs.)	50	70	100	67
Price in 2020 (Rs.)	100	130	80	150

Solution: Calculation of Simple aggregative price index

Commodities	Price in 2019 (P ₀)	Price in 2020 (P1)
Tomato	50	100
Potato	70	130
Wheat	100	80
Rice	67	150
	$\sum P_0 = 287$	$\sum P_1 = 460$

$$P_{01} = \frac{\sum P1}{\sum P0} \times 100$$

We know,

Here, simple aggregative price index (P₀₁) = $\frac{\sum P_1}{\sum P_0}$ × 100 = $\frac{460}{287}$ × 100 = 160.28%

Interpretation: The general price level has been increased by 160.28 - 100 = 60.28% in 2020 in comparison to 2019

2. From the given data, find the price index number for the year 2020 taking 2019 as a base year by using average of price relative method.

Commodities	Price in 2019 (Rs.)	Price in 2020 (Rs.)	
A	6	10	
В	2	2	
C	4	6	
D	10	12	
E	8	12	

Solution: Calculation of price index by using average of price relative method

Solution. Calculation	solution. Calculation of price index by using average of price leading inclined					
Commodities	Price in 2019 (P ₀)	Price in 2020 (P ₁)	$P = \frac{P_1}{P_0} \times 100$			
Α	6	10	166.67			
В	2	2	100			
C	4	6	150			
D	10	12	120			
E	. 8	12	150			
N = 5			$\sum P = 686.67$			

We know, for simple average of price relative index number

$$P_{01} = \frac{\sum P}{n} = \frac{686.67}{5} = 137.33\%$$

Interpretation: The price has been increased by 137.33-100 = 37.33% in 2020 in comparison to 2019.

Calculate the price index from the following data by using weighted average of price relative for the year 2020.

Commodities	, 2	2019	2020		
2	Price	Quantity	Price	Quantity	
A	10	100	20	120	
В	. 11	. 150	25	180	
C	12	180	- 30	210	
D	14	200	40	250	

Solution: Computation for Price Index using weighted average of price relative

Commodities	. Po	Pı .	q _o	q۱	$P = \frac{P_1}{P_0} \times 100$	$W = p_0 q_0$	PW
A	10	20	100	120	200	1000	200000
В	11	25	170	180	227.2	1650	374880
C .	12	30	180	210	250	2160	540000
D A	14	40	200	250	285.7	2800	799960
Total				4	•	$\Sigma W = 7610$	$\sum PW = 1914840$

$$P_{01} = \frac{\Sigma PW}{\Sigma W} = \frac{1914840}{7610} = 251.6\%$$

(If weight is not given, $W = P_0Q_0$)

Interpretation: The price has been increased by 251.6- 100 = 151.6% in 2020 in comparison to 2019.

4. Calculate the price index number by using Laspeyre's method and Paasche's method from the following data and interpret the result.

Commodities	Base	year 2021	2023		
	Price	Quantity	Price	Quantity	
Α	2	20	5	15	
В	4	.4	8	5	
C	1	101	2	12	
D	5	5	10	. 6	

00100111

Solution: Computation of price index numbers by using Laspeyre's and Paasche's method

						0 1	- mid I dasciic s	шсшои
Commodities	Po	qo	рı	qı	po qo	piqo	p ₀ q ₁	DIG
\mathbf{A}^{i}	2	20	5	15	40	100	30	75
В	4	4	8	5	16	32	20	40
C	I	10	2	12	10	20	12	24
D	5	5	10	6	25	50	30	60
Total					$\sum p_0 q_0 = 91$	$\sum p_1 q_0 =$	$\sum p_0 q_1 = 92$	$\sum \mathbf{p_1} \mathbf{q_1} = 199$
		·			A	1 202		

For Laspeyre's price index number, we have

$$P_{01}(L) = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100 = \frac{202}{91} \times 100 = 221.29\%$$

Interpretation: The price has been increased by 221.29- 100 = 121.29% in 2023 in comparison to 2021

For Paasche's price index number, we have

P01 (P) =
$$\frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100 = \frac{199}{92} \times 100 = 216.36\%$$

Interpretation: The price has been increased by 216.36- 100 = 116.36% in 2023 in comparison to 2021

Best of Luck!!!!!

A Key Solution for Economics 12 by Puspa Ghimire

The Economics 12 by ruspa diminic

BP.

7,9

78

25